
Foundations of Arithmetic  

Notation 

We shall denote the sum and product of numbers in the usual notation as  

𝑎1 + 𝑎2 + 𝑎3 + ⋯ + 𝑎𝑘 = ∑ 𝑎𝑖

𝑘

𝑖=1

,     𝑎1𝑎2𝑎3 … 𝑎𝑘 = ∏ 𝑎𝑖

𝑘

𝑖=1

 

The notation 𝑎|𝑏 means 𝑎 divides 𝑏, i.e. 𝑎𝑐 = 𝑏  where 𝑐 is an integer, and 𝑎 ∤ 𝑏  means 𝑎 does 

not divide 𝑏.  If 𝑎𝑐 = 𝑏  (|𝑏| > 1) implies 𝑎 = ±1 or 𝑎 = ±𝑏, then 𝑏 is a prime number.  A 

number 𝑏  (|𝑏| > 1) that is not prime is said to be composite.  There are infinitely many primes, 

for if there were only a finite number, 𝑝1, 𝑝1  . . .   𝑝𝑛 say, then the number 𝑝1𝑝2 … 𝑝𝑛+1 is not 

divisible by any of them and is therefore a new prime itself or is divisible by some other new 

prime, which contradicts the assumption that there are only 𝑛 primes.  

Let 

max(𝑎, 𝑏) = {
𝑎  (𝑎 > 𝑏)
𝑏  (𝑏 > 𝑎)

 ,    min(𝑎, 𝑏) = {
𝑏  (𝑎 > 𝑏)

𝑎  (𝑏 > 𝑎) 
,   max(𝑎, 𝑎) = min(𝑎, 𝑎) = 𝑎. 

It is obvious that 

                                                  max(𝑎, 𝑏) + min(𝑎, 𝑏) = 𝑎 + 𝑏.                                          (1) 

The generalization of this notation to three numbers 𝑎, 𝑏, 𝑐 is straightforward, the only difference 

being that one of the three will be a middle number that is neither the maximum nor the 

minimum (although it could be equal to one of them). Consider the three pairs (𝑎, 𝑏), (𝑏, 𝑐) and 

(𝑐, 𝑎). Only one of them involves the maximum and the middle number. The minimum of this 

pair will therefore be the middle number. The other two pairs must involve the minimum of the 

three numbers so that the minimum of both pairs will be min(𝑎, 𝑏, 𝑐) and therefore their sum will 

be  2 × min
 

(𝑎, 𝑏, 𝑐). It follows that  

min(𝑎, 𝑏) + min(𝑏, 𝑐) + min(𝑐, 𝑎) + max(𝑎, 𝑏, 𝑐) − min(𝑎, 𝑏, 𝑐) = 𝑎 + 𝑏 + 𝑐 

which is the equation that corresponds to (1). Note that if 𝑐 = 𝑏 then max(𝑎, 𝑏, 𝑐) = max(𝑎, 𝑏), 

min(𝑎, 𝑏, 𝑐) = min(𝑎, 𝑏), min
 

(𝑐, 𝑎) = min
 

(𝑎, 𝑏) and min
 

(𝑏, 𝑏) = 𝑏.  Substitution in the 

equation above reduces it to (1), as required.  

 

The fundamental theorem of arithmetic 

The Fundamental Theorem of Arithmetic states that any number 𝑚 ≥ 1 is expressed uniquely as 

a product of powers of prime numbers. Denote the 𝑖𝑡ℎ prime number by 𝑝𝑖, i.e. 𝑝1 = 2, 𝑝2 = 3,

𝑝3 = 5, … , 𝑝8 = 19, etc. Then 



                                                                         𝑚 = ∏ 𝑝𝑖
𝑗𝑖

∞

𝑖=1

  (𝑗𝑖 ≥ 0).                                                        (2) 

If 𝑝𝑘, say, is not a prime factor of 𝑚 then 𝑗𝑘 = 0 so that the factor 𝑝𝑘
𝑗𝑘 = 1. If 𝑝𝑀 is the largest 

prime factor of 𝑚 then 𝑗𝑖 = 0 for 𝑖 > 𝑀 so that all the factors involving primes greater than 𝑝𝑀 

reduce to 1.  If 𝑚 = 1 then 𝑗𝑖 = 0 for 𝑖 ≥ 1 

The representation (2) can be proved by induction. Assume it is true for 1 ≤ 𝑚 ≤ 𝑛 − 1.  When 

𝑚 = 𝑛, 𝑛 can be either prime, in which case the representation (2) is trivially true, or it is 

composite and can therefore be expressed as 𝑛 = 𝑎𝑏, where 1 < 𝑎 ≤ 𝑛 − 1 and 1 < 𝑏 ≤ 𝑛 − 1. 

But by the induction hypothesis both 𝑎 and 𝑏 can be expressed as a product of primes as in (2) so 

that the product 𝑎𝑏 can also be expressed as a product of primes.  It follows that (2) is true for 

𝑚 = 𝑛 = 𝑎𝑏 and by induction the result is proved for all 𝑚. 

It remains to be shown that (2) is unique. Suppose there are two different representations of 𝑚 

expressed in the form of (2), i.e.  

                                                     𝑚 = ∏ 𝑝𝑖
𝑗𝑖

∞

𝑖=1

 = ∏ 𝑝𝑖
𝑘𝑖

∞

𝑖=1

  (𝑗𝑖 ≥ 0,   𝑘𝑖 ≥ 0).                                       (3) 

Consider a prime factor 𝑝𝑠 for which max(𝑗𝑠, 𝑘𝑠) ≠ 0 and 𝑗𝑠 ≠ 𝑘𝑠 and assume for the sake of 

argument that 𝑗𝑠 > 𝑘𝑠. Then (3) can be written as 

𝑝𝑠
𝑗𝑠−𝑘𝑠 ∏ 𝑝𝑖

𝑗𝑖

𝑠−1

𝑖=1

∏ 𝑝𝑖
𝑗𝑖

∞

𝑖=𝑠+1

 = ∏ 𝑝𝑖
𝑘𝑖

𝑠−1

𝑖=1

∏ 𝑝𝑖
𝑘𝑖

∞

𝑖=𝑠+1

  (𝑗𝑖 ≥ 0,   𝑘𝑖 ≥ 0). 

(Note if 𝑘𝑠 > 𝑗𝑠, a factor 𝑝𝑠
𝑘𝑠−𝑗𝑠 would be taken out of the right-hand side instead.)  If  𝑗𝑠 ≠ 𝑘𝑠 

the left-hand side of this equation is divisible by 𝑝𝑠 but the right-hand side is not, which is 

impossible. Thus 𝑗𝑠 = 𝑘𝑠 and since this applies to all prime factors 𝑝𝑖 whose exponents are not 

already equal, we deduce that the two products in (3) are identical.  Therefore, the representation 

of a number 𝑚 as a product of primes is unique. 

Let us now consider a couple of consequences of the Fundamental Theorem. 

(i)  The highest common factor and lowest common multiple of two and three numbers 

By analogy with (2), another number 𝑛 ≥ 1 can be represented as 

𝑛 = ∏ 𝑝𝑖
𝑘𝑖

∞

𝑖=1

  (𝑘𝑖 ≥ 0) 

where 𝑘𝑖 = 0 for 𝑖 > 𝑁 when 𝑝𝑁 is the largest prime factor of 𝑛. The Highest Common Factor 

(HCF) of two numbers 𝑚 and 𝑛 is the largest divisor of both numbers (which is why it is often 

called the Greatest Common Divisor or GCD). Clearly the HCF must include all the common 

prime factors of both numbers. If 𝑝𝑖 is a common factor raised to the powers 𝑗𝑖 and 𝑘𝑖 



respectively, then the largest factor common to both 𝑚 and 𝑛 is 𝑝𝑖
min(𝑗𝑖,𝑘𝑖)

. Note that if 𝑝𝑖 is not a 

common factor but occurs only in the representation of 𝑚 (say) then it is necessary that 𝑘𝑖 = 0 in 

order to exclude it from the representation of 𝑛, as required. In this case min(𝑗𝑖, 𝑘𝑖) = 0 so that 

𝑝𝑖 is omitted from the HCF as well, as indeed it should be. Thus all cases are included in the 

formal definition 

hcf(𝑚, 𝑛) = ∏ 𝑝𝑖
min(𝑗𝑖,𝑘𝑖)

∞

𝑖=1

 

The Lowest Common Multiple (LCM) is the smallest number that is divisible by both 𝑚 and 𝑛. 

This time we must choose 𝑝𝑖 raised to the greater of the two powers 𝑗𝑖 and 𝑘𝑖 for both 𝑚 and 𝑛 to 

be divisors of the LCM.  Thus we define 

lcm(𝑚, 𝑛) = ∏ 𝑝𝑖
max(𝑗𝑖,𝑘𝑖)

∞

𝑖=1

 

Using (1) we obtain 

∏ 𝑝𝑖
min(𝑗𝑖,𝑘𝑖)

∞

𝑖=1

∏ 𝑝𝑖
max(𝑗𝑖,𝑘𝑖)

= ∏ 𝑝𝑖
max(𝑗𝑖,𝑘𝑖)+min(𝑗𝑖,𝑘𝑖)

=

∞

𝑖=1

∞

𝑖=1

∏ 𝑝𝑖
𝑗𝑖+ 𝑘𝑖 =

∞

𝑖=1

∏ 𝑝𝑖
𝑗𝑖

∞

𝑖=1

∏ 𝑝𝑖
𝑘𝑖

∞

𝑖=1

 

Hence 

hcf(𝑚, 𝑛) ∙ lcm(𝑚, 𝑛) = 𝑚𝑛. 

Thus once the HCF of two numbers is known, the LCM is easily found. 

With 𝑞 ≥ 1 defined by   

𝑞 = ∏ 𝑝𝑖
𝑙𝑖

∞

𝑖=1

  (𝑙𝑖 ≥ 0) 

the definitions of the HCF and LCM of three numbers 𝑚, 𝑛 and 𝑞 become 

hcf(𝑚, 𝑛, 𝑞) = ∏ 𝑝𝑖

min(𝑗𝑖,𝑘𝑖,𝑙𝑖)
 ,

∞

𝑖=1

      lcm(𝑚, 𝑛, 𝑞) = ∏ 𝑝𝑖

max(𝑗𝑖,𝑘𝑖,𝑙𝑖)
∞

𝑖=1

 

Let hcf(𝑚, 𝑛) = ℎ and min(𝑗𝑖, 𝑘𝑖) = 𝑠𝑖.  Since min(𝑗𝑖, 𝑘𝑖 , 𝑙𝑖) = min(𝑠𝑖, 𝑙𝑖), it is clear that 

hcf(ℎ, 𝑞) = ∏ 𝑝𝑖
min(𝑠𝑖,𝑙𝑖)

∞

𝑖=1

= ∏ 𝑝𝑖

min(𝑗𝑖,𝑘𝑖,𝑙𝑖)
= hcf(𝑚, 𝑛, 𝑞) 

∞

𝑖=1

 

which demonstrates the fairly obvious fact that the HCF of three numbers is the HCF of the pair 

comprising one number and the HCF of the other two, i.e. hcf(𝑚, 𝑛, 𝑞) = hcf[hcf(𝑚, 𝑛), 𝑞].   



The relation between the HCF and LCM of three numbers is more complicated. Following the 

same approach as before, but using the modified formula for the maximum of three numbers 

instead of (1), we obtain  

      ∏ 𝑝𝑖

max(𝑗𝑖,𝑘𝑖,𝑙𝑖)
= ∏ 𝑝𝑖

𝑗𝑖+𝑘𝑖+𝑙𝑖+min(𝑗𝑖,𝑘𝑖,𝑙𝑖)−min(𝑗𝑖,𝑘𝑖)−min(𝑘𝑖,𝑙𝑖)−min(𝑙𝑖,𝑗𝑖)

∞

𝑖=1

∞

𝑖=1

 

which gives the relation 

lcm(𝑚, 𝑛, 𝑞) =
𝑚𝑛𝑞 hcf(𝑚, 𝑛, 𝑞)

hcf(𝑚, 𝑛)hcf(𝑛, 𝑞)hcf(𝑞, 𝑚)
  

If 𝑞 = 𝑛, then lcm(𝑚, 𝑛, 𝑞) = lcm(𝑚, 𝑛), hcf(𝑚, 𝑛, 𝑞)/hcf(𝑚, 𝑛) = 1, 𝑞/hcf(𝑛, 𝑞) = 1 and 

hcf(𝑞, 𝑚) = hcf(𝑚, 𝑛) which substituted above give lcm(𝑚, 𝑛) = 𝑚𝑛/hcf(𝑚, 𝑛), in agreement 

with the relation for two numbers. 

There appears to be little point in deriving a connection between the LCM and HCF for more 

than three numbers as it will become increasingly complicated and of little practical help. 

 (ii)  Euclid’s algorithm and numerical examples 

A familiar way of calculating the HCF of two numbers dates back to Euclid.  Let ℎ = hcf(𝑚, 𝑛) 

and suppose 𝑚 ≥ 𝑛. Then 

                                                     𝑚 = 𝑐1𝑛 + 𝑟1    (0 ≤ 𝑟1 < 𝑛).                                                  (4) 

Here 𝑟1 is the remainder left after dividing 𝑚 by 𝑛. If 𝑛|𝑚 then 𝑟1 = 0 and the HCF is simply 𝑛 

itself. Otherwise 𝑟1 must be smaller than 𝑛 because 𝑐1 is the maximum number of times 𝑛 goes 

into 𝑚. Since ℎ|𝑚 and ℎ|𝑛 it is obvious from (4) that ℎ|𝑟1 as well, and because 𝑛 > 𝑟1 we may 

therefore write by analogy with (4)  

                                                      𝑛 = 𝑐2𝑟1 + 𝑟2    (0 ≤ 𝑟2 < 𝑟1).                                                (5) 

Again we have ℎ|𝑟2 because it also divides both 𝑛 and 𝑟1 in equation (5).  The procedure 

continues in this way, the next step yielding 

𝑟1 = 𝑐3𝑟2 + 𝑟3    (0 ≤ 𝑟3 < 𝑟2)  

where ℎ|𝑟3 and so on until we reach the (𝑘 − 1)th and 𝑘th steps 

                                              𝑟𝑘−2 = 𝑐𝑘𝑟𝑘−1 + 𝑟𝑘    (0 ≤ 𝑟𝑘 < 𝑟𝑘−1)                                           (6) 

𝑟𝑘−1 = 𝑐𝑘+1𝑟𝑘 + 𝑟𝑘+1    (0 ≤ 𝑟𝑘+1 < 𝑟𝑘). 

The sequence of positive integers 𝑟1 > 𝑟2 > ⋯ > 𝑟𝑘−1 > 𝑟𝑘 is decreasing so must eventually 

terminate in 0.  Let 𝑟𝑘+1 = 0 so that the last equation above reduces to 

                                                                 𝑟𝑘−1 = 𝑐𝑘+1𝑟𝑘    (0 < 𝑟𝑘)                                                     (7) 

where ℎ|𝑟𝑘 which implies ℎ ≤ 𝑟𝑘.   



Reversing the argument, we see from (7) that 𝑟𝑘|𝑟𝑘−1 which implies 𝑟𝑘|𝑟𝑘−2 by (6).  Likewise   

𝑟𝑘|𝑟𝑘−2 ⇒ 𝑟𝑘|𝑟𝑘−3 ⇒ 𝑟𝑘|𝑟𝑘−4 ⇒ ⋯  ⇒ 𝑟𝑘|𝑟2 ⇒ 𝑟𝑘|𝑟1 ⇒ 𝑟𝑘|𝑛 ⇒ 𝑟𝑘|𝑚 

the last two steps following from (5) and (4). Thus 𝑟𝑘 is a common factor of both 𝑚 and 𝑛, but 

because ℎ is the highest common factor it must satisfy ℎ ≥ 𝑟𝑘. We have now proved that ℎ 

satisfies both ℎ ≤ 𝑟𝑘 and ℎ ≥ 𝑟𝑘 from which we conclude ℎ = 𝑟𝑘, the final remainder in Euclid’s 

algorithm.  

As a numerical example of its application, let us calculate the HCF of 2472 and 9216: 

9216 = 3 × 2472 + 1800 

2472 = 1 × 1800 + 672 

1800 = 2 × 672 + 456 

672 = 1 × 456 + 216 

456 = 2 × 216 + 24 

216 = 9 × 24 

Thus 24, the last remainder, is the HCF of 2472 and 9216. It follows that the LCM of the two 

numbers is 2472 × 9216/24 = 949,248.  

The HCF of the three numbers 2472, 9216 and 4616 is the HCF of 24 and 4616 which is easily 

shown by Euclid’s algorithm to be 8. Since the HCFs of 2472 and 4616, and of 9216 and 4616, 

are both found to be 8 as well, the formula for the LCM of three numbers yields 

lcm(2472,9216,4616) =
2472 × 9216 × 4616 × 8

24 × 8 × 8
= 547716096 

Finally, we derive from the Euclid algorithm a property of the HCF that is not particularly 

obvious from its definition, namely that there exist integers 𝑎 and 𝑏 (one of them being negative) 

such that ℎ = 𝑎𝑚 + 𝑏𝑛. For, from (6) we have 

ℎ = 𝑟𝑘 = 𝑟𝑘−2 − 𝑐𝑘𝑟𝑘−1 = 𝑟𝑘−2 − 𝑐𝑘(𝑟𝑘−3 − 𝑐𝑘−1𝑟𝑘−2) = 𝑢𝑟𝑘−2 − 𝑐𝑘𝑟𝑘−3 = 𝑢𝑟𝑘−4 − 𝑣𝑟𝑘−3 

                                                                                                         = 𝑤𝑟𝑘−4 − 𝑣𝑟𝑘−5 = ⋯  

where 𝑢 = 1 + 𝑐𝑘𝑐𝑘−1 ,  𝑣 = 𝑐𝑘 + 𝑢𝑐𝑘−2 , 𝑤 = 𝑢(1 + 𝑐𝑘−2𝑐𝑘−3) + 𝑐𝑘𝑐𝑘−3. Note that 𝑐𝑘, 𝑢, 𝑣, 𝑤,  

etc. are all positive numbers so that one term in each step is positive and the other negative. The 

procedure continues as we work backwards through the algorithm to the final two equations, 

which according to (4) and (5), will take the form ℎ = ⋯ = 𝑐𝑛 + 𝑎𝑟1 = 𝑎𝑚 + 𝑏𝑛 with 𝑎, 𝑏 and 

𝑐 representing integers to be determined. 

Using the same numerical example (𝑚 = 9216, 𝑛 = 2472) to illustrate the theory, we find that 

successive stages of the calculation give 

𝑚 = 3𝑛 + 1800 ⇒ 𝑚 − 3𝑛 = 1800 



𝑛 = 1 × (𝑚 − 3𝑛) + 672 ⇒ 4𝑛 − 𝑚 = 672 

𝑚 − 3𝑛 = 2 × (4𝑛 − 𝑚) + 456 ⇒ 3𝑚 − 11𝑛 = 456 

4𝑛 − 𝑚 = 1 × (3𝑚 − 11𝑛) + 216 ⇒ 15𝑛 − 4𝑚 = 216 

3𝑚 − 11𝑛 = 2 × (15𝑛 − 4𝑚) + ℎ ⇒ ℎ = 11𝑚 − 41𝑛. 

Thus 𝑎 = 11 and 𝑏 = −41 in this example. Checking we see that  

11 × 9216 − 41 × 2472 = 101,376 − 101,352 = 24 

which verifies the stated property of the HCF.  

  

Analytical form of the fundamental theorem 

Now consider the expression 

𝑓𝑘(𝑠) = ∏
1

1 − 𝑝𝑖
−𝑠           (𝑠 > 1).

𝑘

𝑖=1

 

Since (1 − 𝑥)−1 = Σ𝑟=0
∞ 𝑥𝑟 for |𝑥| < 1, and since 𝑝𝑖 ≥ 2, the expression under the product sign 

can be expanded in a convergent series, i.e.  

𝑓𝑘(𝑠) = ∏ ∑(𝑝𝑖
−𝑠

∞

𝑟=0

)𝑟          (𝑠 > 1).

𝑘

𝑖=1

 

Suppose 𝑘 = 2 for simplicity, then 

𝑓2(𝑠) = ∑(𝑝1
−𝑠

∞

𝑟=0

)𝑟 ∑(𝑝2
−𝑠

∞

𝑡=0

)𝑡  =  ∑ ∑(𝑝1
𝑟𝑝2

𝑡

∞

𝑡=0

∞

𝑟=0

)−𝑠   

where 𝑝1 = 2 and 𝑝2 = 3 of course. Clearly all numbers that have prime factors 2 and 3 raised to 

all possible combinations of powers will be included within the brackets of this double 

summation.  For example,  

1−𝑠 = (20 × 30)−𝑠,   2−𝑠 = (21 × 30)−𝑠, 3−𝑠 = (20 × 31)−𝑠, 72−𝑠 = (23 × 32)−𝑠,

(124,416)−𝑠 = (29 × 35)−𝑠 

are five such terms in the sum defining 𝑓2(𝑠). Thus we may write  

𝑓2(𝑠) = ∑ 𝑛−𝑠

𝑝1,𝑝2

 

where the notation implies that summation is over all numbers 𝑛 whose prime factors comprise 

every possible combination of powers of 𝑝1 and 𝑝2. By the Fundamental Theorem each 𝑛 is 

uniquely expressed and can therefore only appear once in the summation. Likewise, 𝑓3(𝑠) will be 



the sum of all numbers with prime factors 2, 3 and 5 raised to all possible combinations of 

powers. In general, we have  

𝑓𝑘(𝑠) = ∑ 𝑛−𝑠 > ∑ 𝑛−𝑠

𝑝𝑘

𝑛=1𝑝1,𝑝2… 𝑝𝑘

 

the inequality resulting from the fact that the numbers from 1 to 𝑝𝑘 are already included in the 

first summation, as indicated by the first three terms in the example above for 𝑓2(𝑠).  

Since 𝑠 > 1, the infinite series Σ𝑛=1
∞ 𝑛−𝑠 is convergent.  It is in fact the well-known Riemann zeta 

function 𝜁(𝑠).  It follows from the inequality above that 

𝑓𝑘(𝑠) > ∑ 𝑛−𝑠

𝑝𝑘

𝑛=1

= ∑ 𝑛−𝑠

∞

𝑛=1

− ∑ 𝑛−𝑠

∞

𝑛=𝑝𝑘+1

> 0 

which, on rearrangement, becomes 

                                                                    0 < 𝜁(𝑠) − 𝑓𝑘(𝑠) < ∑ 𝑛−𝑠

∞

𝑛=𝑝𝑘+1

.                                          (8) 

Now let 𝑘 → ∞ which means 𝑝𝑘 → ∞ as well. Then the right-hand side of (8) tends to 0 so that 

𝑓∞(𝑠) = lim
𝑘→∞

𝑓𝑘(𝑠) = 𝜁(𝑠), or with reference to the original definition of 𝑓𝑘(𝑠), 

𝜁(𝑠) = ∏
1

1 − 𝑝𝑖
−𝑠

∞

𝑖=1

 . 

Hardy and Wright (An Introduction to the Theory of Numbers, 4th Edition, Oxford University 

Press, 1960) call this an analytical expression of the Fundamental Theorem of Arithmetic.  It is 

an important result in the theory of primes as it relates them to the zeta function which has been 

extensively analysed. 

  

Legendre’s formula 

It follows from the fundamental theorem that for any positive integer 𝑛  

𝑛! ≡ ∏ 𝑚 = ∏ 𝑝𝑖
𝑘𝑖

∞

𝑖=1

𝑛

𝑚=1

 

the expression on the right-hand side being the unique product of primes defining 𝑛!. Legendre’s 

formula provides a way of determining the exponents 𝑘𝑖 ≥ 0 without the need to calculate 𝑛! 

itself. To illustrate the method, we first consider a specific example with 𝑛 = 10, 𝑖 = 2 and look 

for the exponent 𝑘2 of 𝑝2 = 3.  Clearly, every third number in the expression  



10! = 1 × 2 × 3 × 4 × 5 × 6 × 7 × 8 × 9 × 10 

will have a prime factor 3.  There are ⌊10/3⌋ = 3 such numbers, where the notation ⌊𝑥⌋, known 

as the floor function, means the greatest integer less than or equal to 𝑥 or the ‘integral part’ of 𝑥, 

e.g. ⌊2.4⌋ = 2, ⌊0.9⌋ = 0, ⌊1.0⌋ = 1.  

Note also that every ninth number is actually divisible by 32 thereby contributing an additional 

prime factor 3 each time. There are ⌊10/32⌋ = 1 such numbers in the product defining 10!.  

Likewise, every twenty-seventh number would be divisible by 33, but ⌊10/33⌋ = 0 indicating 

this is beyond the range of numbers in the product 10!.  Clearly there will be no further 

contributions to 𝑘2 from exponents greater than 3 and we deduce that  

𝑘2 = ⌊10/3⌋ + ⌊10/32⌋ + ⌊10/33⌋ = 3 + 1 + 0 = 4 

Applying the same arguments to 𝑝1 = 2, 𝑝3 = 5 and 𝑝4 = 7 and stopping each time once we 

reach 0, we obtain 

𝑘1 = ⌊10/2⌋ + ⌊10/22⌋ + ⌊10/23⌋ + ⌊10/24⌋ = 5 + 2 + 1 + 0 = 8 

𝑘3 = ⌊10/5⌋ + ⌊10/52⌋ = 2 + 0 = 2 

𝑘4 = ⌊10/7⌋ + ⌊10/72⌋ = 1 + 0 = 1 

The next prime 𝑝5 = 11 and all subsequent primes cannot be factors of 10! because they are all 

larger than the numbers in the product itself.  Collecting the results obtained above, we see that 

the unique representation of 10! as a product of powers of primes is  

10! = 3,628,800 = 28 × 34 × 52 × 7 

The generalisation of Legendre’s formula is now obvious.  Using the same arguments as in the 

specific example above, we have for any positive integer 𝑛 

𝑛! = ∏ 𝑝𝑖
𝑘𝑖     where     

∞

𝑖=1

𝑘𝑖 = ∑ ⌊
𝑛

𝑝𝑖
𝑟⌋

∞

𝑟=1

 

Although the summation is infinite, we know that it will actually terminate after a finite number 

of terms when 𝑝𝑖
𝑟 > 𝑛, i.e. ⌊𝑛/𝑝𝑖

𝑟⌋ = 0.  At this point the infinite product also terminates because 

from then onwards it contributes only factors 1 to the product.     

The product of 𝒏 consecutive positive integers is divisible by 𝒏! 

The proof of this simple result provides a nice application of Legendre’s formula. We note first 

that since 𝑥 + 𝑦 = (⌊𝑥⌋ + 𝑎) + (⌊𝑦⌋ + 𝑏), where 0 ≤ 𝑎 < 1 and 0 ≤ 𝑏 < 1, it follows that  

⌊𝑥 + 𝑦⌋ = ⌊𝑥⌋ + ⌊𝑦⌋ if 0 ≤ 𝑎 + 𝑏 < 1 but ⌊𝑥 + 𝑦⌋ = ⌊𝑥⌋ + ⌊𝑦⌋ + 1 if 1 ≤ 𝑎 + 𝑏 < 2.  Hence we 

may assert in general that ⌊𝑥⌋ + ⌊𝑦⌋ ≤ ⌊𝑥 + 𝑦⌋ for positive integers 𝑥 and 𝑦. 

Let the 𝑛 successive integers begin with 𝑚 + 1 (𝑚 ≥ 0).  Thus we want to prove that 

𝑛! |(𝑚 + 1)(𝑚 + 2) … (𝑚 + 𝑛), that is  



(𝑚 + 1)(𝑚 + 2) … (𝑚 + 𝑛)

𝑛!
=

(𝑚 + 𝑛)!

𝑚! 𝑛!
 

is a positive integer. We shall focus on one specific prime factor, 𝑝 say, by writing 𝑛! =  𝑝𝑘𝑁 

where 𝑁 represents the product of all the other prime factors of 𝑛!, and likewise 𝑚! =  𝑝𝑗𝑀 and 

(𝑚 + 𝑛)! =  𝑝𝑖𝑃, so that the ratio above becomes 𝑝𝑖𝑃/(𝑝𝑗𝑀𝑝𝑘𝑁) = 𝑝𝑖−(𝑗+𝑘)𝑃/(𝑀𝑁), where 𝑃 

clearly contains all the prime factors appearing in 𝑀 and 𝑁 because it is greater than both of 

them. From Legendre’s formula we have 

 𝑖 = ∑ ⌊
𝑚 + 𝑛

𝑝𝑟
⌋,   

∞

𝑟=1

𝑗 + 𝑘 = ∑ ⌊
𝑚

𝑝𝑟
⌋ + ∑ ⌊

𝑛

𝑝𝑟
⌋

∞

𝑟=1

∞

𝑟=1

= ∑ (⌊
𝑚

𝑝𝑟
⌋ + ⌊

𝑛

𝑝𝑟
⌋)

∞

𝑟=1

 

and since ⌊𝑥⌋ + ⌊𝑦⌋ ≤ ⌊𝑥 + 𝑦⌋ as noted earlier, we conclude that 

⌊𝑚/𝑝𝑟⌋ + ⌊𝑛/𝑝𝑟⌋ ≤ ⌊(𝑚 + 𝑛)/𝑝𝑟⌋    ⇒    𝑗 + 𝑘 ≤ 𝑖 

This shows that the exponent 𝑖 − (𝑗 + 𝑘) of 𝑝 is non-negative, thereby indicating that the factors 

𝑝𝑗 and 𝑝𝑘 in the denominator 𝑚! 𝑛! of the ratio always divide into the corresponding prime 

factor 𝑝𝑖  in the numerator (𝑚 + 𝑛)!. Similar arguments apply to every other prime factor in the 

remaining factors 𝑀 and 𝑁 and we conclude that (𝑚 + 𝑛)! is divisible by 𝑚! 𝑛!, which proves 

the original proposition.  

Congruences and modular arithmetic 

If 𝑎, 𝑏 and 𝑚 are integers, then the statement 𝑎 is congruent to 𝑏 modulo 𝑚 means 𝑚|(𝑎 − 𝑏) 

which is written formally as 𝑎 ≡ 𝑏 (mod 𝑚).  Another way of interpreting this definition is to 

observe that 𝑎 and 𝑏 will have the same remainders when divided by 𝑚.  For if 𝑎 = 𝑞1𝑚 + 𝑟1 

and 𝑏 = 𝑞2𝑚 + 𝑟2, where 𝑞1 and 𝑞2 are the quotients and 𝑟1 and 𝑟2 (0 ≤ 𝑟1,2 < 𝑚) are the 

remainders, then 

𝑎 − 𝑏 = (𝑞1 − 𝑞2)𝑚 + (𝑟1 − 𝑟2). 

It follows that 𝑎 − 𝑏 is divisible by 𝑚 if and only if  𝑟1 = 𝑟2.   

Clearly the definition 𝑚|(𝑎 − 𝑏) is the same as stating 𝑎 − 𝑏 = 𝑘𝑚 where 𝑘 is an integer.  In 

other words, the congruence 𝑎 ≡ 𝑏 (mod 𝑚) is equivalent to the equation 𝑎 = 𝑘𝑚 + 𝑏. The 

number 𝑏 is called a residue of 𝑎 modulo 𝑚.  It can be regarded as what is left over after some 

multiple of 𝑚 is subtracted from 𝑎.  If  0 ≤ 𝑏 < 𝑚 it is the same as the remainder (also called the 

least positive residue) introduced above, but other numbers, namely those that differ from 𝑏 by a 

multiple of 𝑚 (i.e. are congruent to 𝑏 modulo 𝑚) are also residues.  Modular arithmetic doesn’t 

distinguish between such numbers; they are all regarded as equivalent and are said to belong to 

the same congruence class.  For example, 100 ≡ 1 (mod 9) but 100 is also congruent modulo 9 

to 10, 19, 28, 37, −8, −17 etc. all of which are members of the class containing 1 as its least 

positive residue. 

It is obvious that {0, 1, 2, ⋯ , 𝑚 − 1} is a complete set of incongruent residues modulo 𝑚. 

Incongruent because being less than 𝑚 they cannot differ from each other by some multiple of 



𝑚, and complete because all other integers will differ from one of the numbers in the set by some 

multiple of 𝑚 and will therefore be congruent to that number.  Each residue in the set defines its 

own congruence class modulo 𝑚; all other integers will be congruent to just one residue in the 

set and will therefore belong to the same congruence class as that residue.  Each congruence 

class can be defined by any one of its members, not just the one stated in the given set, because 

all the members are congruent modulo 𝑚 to each other.  For example, we could have taken 

{1, 2, 3, ⋯ , 𝑚} as the defining set, or even {𝑚, 𝑚 + 1, 𝑚 + 2, ⋯ , 2𝑚 − 1}.     

We unconsciously use modular arithmetic in everyday life, the most obvious example being mod 

12 arithmetic to measure time on a clock.  When consulting a railway timetable or the departure 

time of a flight we may see the time given as 17.30. Without thinking, we would do a quick 

mental calculation in mod 12 arithmetic by subtracting 12 to obtain the least residue, and 

recognise the time in question as 5.30 pm.  Similarly, if a doctor on a Monday appointment 

wants to see how the treatment is going after 25 days, we may be more concerned with the day of 

the week that will fall on, rather than the actual date, in case it clashes with some regular weekly 

commitment. Automatically we would switch to mod 7 arithmetic, subtract 21 from 25, and find 

it will be on a Friday, 4 days after Monday. These two examples correspond to the congruences 

17 ≡ 5 (mod 12) and 25 ≡ 4 (mod 7) respectively. 

It is a trivial exercise to prove that congruences obey most of the rules of ordinary algebra.  For 

example (it is understood all congruences are mod 𝑚), if 𝑎 ≡ 𝑟 and 𝑏 ≡ 𝑠, then 𝑎 + 𝑏 ≡ 𝑟 + 𝑠  

and 𝑎𝑏 ≡ 𝑟𝑠 because 𝑎 − 𝑟, 𝑏 − 𝑠, and 𝑎𝑏 − 𝑟𝑠 = 𝑎(𝑏 − 𝑠) + 𝑠(𝑎 − 𝑟) are all divisible by 𝑚; if 
𝑎 ≡ 𝑏, and 𝑏 ≡ 𝑐 then 𝑎 ≡ 𝑐 because both 𝑎 and 𝑐 have the same remainder as 𝑏 when divided 

by 𝑚; and if 𝑎 ≡ 𝑏 then 𝑘𝑎 ≡ 𝑘𝑏  because 𝑚|𝑘(𝑎 − 𝑏).  An important exception, however, is 

that the congruence 𝑘𝑎 ≡ 𝑘𝑏 does not necessarily reduce to 𝑎 ≡ 𝑏 because the common factor 𝑘 

may absorb part of the division by 𝑚.  On cancelling out the common factor 3 on each side of   

27 ≡ 15 (mod 6), for example, we are left with the incongruent relation 9 ≢ 5 (mod 6).  If 𝑘 is 

coprime with 𝑚, however, then clearly 𝑘𝑎 ≡ 𝑘𝑏 does indeed imply 𝑎 ≡ 𝑏.  

Another result we shall use in the next section is that the HCF of the modulus 𝑚 and a residue 𝑏 

is the same for all numbers in the congruence class defined by 𝑏. Suppose hcf(𝑚, 𝑏) = 𝑑 and let 

𝑏 + 𝑘𝑚 be some other number in the same congruence class as 𝑏, with hcf(𝑚, 𝑏 + 𝑘𝑚) = 𝑑1.  

Since 𝑑 is the HCF of 𝑚 and 𝑏, 𝑑|𝑚 and 𝑑|𝑏 so that 𝑑|(𝑏 + 𝑘𝑚). Thus 𝑑 ≤ 𝑑1 since 𝑑1 is the 

HCF of 𝑚 and 𝑏 + 𝑘𝑚.  Likewise, 𝑑1|(𝑏 + 𝑘𝑚) and 𝑑1|𝑚 whence 𝑑1|(𝑏 + 𝑘𝑚 − 𝑘𝑚), that is 

𝑑1|𝑏 as well as 𝑑1|𝑚. But 𝑑 is the HCF of 𝑚 and 𝑏 so that 𝑑1 ≤ 𝑑. The two conflicting 

inequalities are only satisfied if 𝑑1 = 𝑑, that is any number in the congruence class defined by 𝑏 

has the same HCF with the modulus 𝑚 as 𝑏 itself. In particular, if hcf(𝑚, 𝑏) = 1, in which case 

𝑚 and 𝑏 are said to be coprime (or relatively prime), then all numbers in the same congruence 

class as 𝑏 are coprime with 𝑚. 

A number is divisible by 9 if and only if the sum of its digits is divisible by 9 

This familiar arithmetical trick is known to many school students who otherwise have little 

interest in mathematics. Its proof, however, serves as an example of modular arithmetic and 

congruences.   



We prove first by induction that 10𝑛 ≡ 1 (mod 9) for all positive integers 𝑛.  Assuming the 

statement is true, we note that 10𝑛+1 − 1 = 10(10𝑛 − 1) + 9 is divisible by 9, or in other words 

10𝑛+1 ≡ 1 (mod 9). Thus 10𝑛 ≡ 1 (mod 9) for all positive 𝑛 since it is trivially true for 𝑛 = 1.  

Hence 𝑎10𝑛 ≡ 𝑎 (mod 9) and 𝑎10𝑛 + 𝑏10𝑚 ≡  𝑎 + 𝑏 (mod 9).  

Now let a number 𝑐 be written in the usual way as  𝑎𝑛𝑎𝑛−1 … 𝑎1𝑎0,  e.g. if 𝑐 = 9704 we have 

𝑎0 = 4, 𝑎1 = 0,  𝑎2 = 7, 𝑎3 = 9.  This standard notation is, of course, shorthand for the 

expression 𝑐 = 𝑎0 + 𝑎110 + 𝑎2102 + ⋯ + 𝑎𝑛10𝑛.  By virtue of the result in the preceding 

paragraph we deduce that 𝑐 − 𝑎0 ≡ 𝑎1 + 𝑎2 + ⋯ + 𝑎𝑛  (mod 9) or  9|{𝑐 − (𝑎0 + 𝑎1 + ⋯ 𝑎𝑛)}. 

Thus if 𝑐 is divisible by 9 then the sum of its digits must also be divisible by 9 and conversely, if 

9 divides the sum of the digits of 𝑐, then 𝑐 itself is divisible by 9.  

The totient 

The totient 𝜑(𝑛) of a positive integer 𝑛 is defined as the number of integers 𝑘 (1 ≤ 𝑘 ≤ 𝑛) that 

are coprime with 𝑛. For example, there are eight such numbers 1, 5, 7, 11, 13, 17, 19, 23 coprime 

with 24, so that 𝜑(24) = 8 (note that since hcf(1, 𝑛) = 1, the number 1 is always counted in the 

totient). Likewise, 𝜑(25) = 20 because only multiples of 5 are excluded. Since 23 is a prime 

number, all positive integers from 1 to 22 are prime to 23, so that 𝜑(23) = 22.  In fact, we can 

state in general that 𝜑(𝑝) = 𝑝 − 1, where 𝑝 is a prime. If 𝑛 > 1, an alternative definition of 

𝜑(𝑛) is the number of integers 𝑘 (0 ≤ 𝑘 ≤ 𝑛 − 1) that are coprime with 𝑛. This replaces 𝑘 = 𝑛 

with 𝑘 = 0, neither of which are coprime with 𝑛 since hcf(𝑛, 𝑛) = hcf(0, 𝑛) = 𝑛, so that the 

totient is unaffected.  

Consider now the totient of the product of two relatively prime numbers. To illustrate how this is 

found in general, we begin with a numerical example. Let 4 and 9 be the relatively prime pair so 

that we want to calculate 𝜑(36). It is more convenient to use the alternative definition of the 

totient by arranging the numbers from 0 to 35 in a 4 × 9 array, as follows: 

   

  

   
0 1 2
9 10 11

    

   
3 4 5

12 13 14
    

   
6 7 8

15 16 17
             

   
0 1 2
9 10 11

   

   
3 4 5

12 13 14
     

   
6 7 8

15 16 17
                        

18 19 20
27 28 29

    
21 22 23
30 31 32

   
24 25 26
33 34 35

            
18 19 20
27 28 29

   
21 22 23
30 31 32

    
24 25 26
33 34 35

                 

                             

Clearly the numbers in the first row of the array are a complete set of residues modulo 9.  

Likewise, the second, third and subsequent rows are also complete sets of residues with the 

numbers in each column belonging to the same congruence class.  Since 1, 2, 4, 5, 7, 8 in the first 

row are coprime with 9 we have 𝜑(9) = 6 and it follows from the result shown in the last 

section that all numbers in the six columns (or congruence classes) coloured red in the first array 

are also coprime with 9.  On the same array on the right, the numbers coprime with 4 are 

coloured green or yellow. Note there are two such numbers in each column. Those that belong to 



a red column in the array on the left, and are therefore coprime with 9 as well, are the ones  

coloured green.      

Now numbers in the array will be coprime with 36 if and only if they are coprime with both 

4 and 9. This is because the prime factors of 36 are 2 × 2 × 3 × 3 are the combined prime 

factors of 4 and 9 respectively. Therefore, if a number contains none of those factors it will be 

coprime with 36, and conversely any number coprime with 36 will not contain any of those same 

factors and will therefore be coprime with 4 and 9.  Hence we seek those numbers, depicted in 

green in the right-hand array namely 1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35, which gives the 

result 𝜑(36) = 12 = 𝜑(4)𝜑(9).  

In general, we cannot rely on inspection to identify the coprime numbers; a more systematic 

approach is required.  Accordingly, we note that any number in the first array can be expressed 

in the form 4𝑞 + 𝑟 where 𝑞 (0 ≤ 𝑞 ≤ 8) is the quotient when the number is divided by 4 and 

𝑟 (0 ≤ 𝑟 ≤ 3) is the remainder. Recalling that a coprime number in a red column, with number 𝑎 

(0 ≤ 𝑎 ≤ 8) in the first row, is given by 𝑎 + 9𝑏 (0 ≤ 𝑏 ≤ 3), we consider two such numbers 

𝑎 + 9𝑏1 and 𝑎 + 9𝑏2 in the same red column. They can be expressed in the alternative forms 

𝑎 + 9𝑏1 = 4𝑞1 + 𝑟1            𝑎 + 9𝑏2 = 4𝑞2 + 𝑟2 

where, as we shall now show, 𝑟1 ≠ 𝑟2.  If 𝑞1 = 𝑞2 the remainders are necessarily different as 

otherwise there would only be one number defined.  Assuming therefore that 𝑞1 ≠ 𝑞2 and 

subtracting the two equations, we obtain  

9(𝑏1 − 𝑏2) = 4(𝑞1 − 𝑞2) + 𝑟1 − 𝑟2 

Now suppose 𝑟1 = 𝑟2 so that 9(𝑏1 − 𝑏2) = 4(𝑞1 − 𝑞2).  Since 9 and 4 are coprime, they have no 

common factors, whence 9|(𝑞1 − 𝑞2). But 0 < |𝑞1 − 𝑞2| ≤ 8 so this is impossible. Thus we 

have a contradiction and conclude that 𝑟1 ≠ 𝑟2, that is all the remainders in the column are 

different, ranging from 0 to 3 in some order. Let us take the red column with 𝑎 = 2 as an 

example.  Then 2 + 9𝑏 = 4𝑞 + 𝑟 and as we let 𝑏 run through its successive values from 0 to 3 

we find that in the 1st, 2nd, 3rd and 4th rows respectively,  𝑞 = 0, 𝑟 = 2;  𝑞 = 2, 𝑟 = 3;  𝑞 = 5,
𝑟 = 0;  𝑞 = 7, 𝑟 = 1.  The reminders are different in each of the four rows.  

As proved in the previous discussion of congruence classes, hcf(4, 4 + 𝑟) = hcf(4, 𝑟) and since 

hcf(4, 𝑟) = 1 when 𝑟 = 1 or 3, there are just two numbers coprime with 4 in each column.  In 

the third column with 𝑎 = 2, the coprime numbers are in the 2nd and 4th rows and these are the 

numbers contributing to 𝜑(4). There are 𝜑(9) columns of numbers coprime with 9, each with 

𝜑(4) numbers coprime with 4.  Hence there are 𝜑(4)𝜑(9) numbers coprime with both 9 and 4, 

i.e. 𝜑(36) = 𝜑(4)𝜑(9). 

In the general case, let hcf(𝑚, 𝑛) = 1 and consider the 𝑚 × 𝑛 array depicted below.  As 

explained in the numerical example above, numbers are coprime with 𝑚𝑛 if and only if they are 

coprime with both 𝑚 and 𝑛. The procedure for identifying these numbers follows that described 

in the numerical example and need only be given in outline here.  



Representative columns and rows for general discussion are defined by the numbers 𝑘 in the first 

row and 𝑗𝑛 in the first column respectively, where 0 ≤ 𝑗 ≤ 𝑚 − 1 and 0 ≤ 𝑘 ≤ 𝑛 − 1. 

0                  1          ⋯
𝑛                   1 + 𝑛          ⋯
2𝑛                    1 + 2𝑛          ⋯         

𝑘        ⋯
𝑘 + 𝑛        ⋯

𝑘 + 2𝑛        ⋯        

𝑛 − 2               𝑛 − 1
2𝑛 − 2                2𝑛 − 1
3𝑛 − 2                3𝑛 − 1 

  ⋮                          ⋮                                   ⋮                                  ⋮                            ⋮ 

𝑗𝑛                      1 + 𝑗𝑛             ⋯          𝑘 + 𝑗𝑛           ⋯         𝑗𝑛 − 2                  𝑗𝑛 − 1         

  ⋮                           ⋮                                   ⋮                                      ⋮                            ⋮   
(𝑚 − 2)𝑛 1 + (𝑚 − 2)𝑛
(𝑚 − 1)𝑛 1 + (𝑚 − 1)𝑛

      

   
⋯ 𝑘 + (𝑚 − 2)𝑛 ⋯
⋯ 𝑘 + (𝑚 − 1)𝑛 ⋯

    

   
(𝑚 − 1)𝑛 − 2     (𝑚 − 1)𝑛 − 1

𝑚𝑛 − 2   𝑚𝑛 − 1
 

If hcf(𝑘, 𝑛) = 1 is coprime with 𝑛 (corresponding to a red column in the previous example) then 

we know all the numbers in the column headed by 𝑘, which we shall call column 𝑘 for 

simplicity, are also coprime with 𝑛.  Conversely, if hcf(𝑘, 𝑛) ≠ 1, then none of the numbers in 

column 𝑘 are prime to 𝑛. There are 𝜑(𝑛) such columns. We also know from the arguments given 

in the numerical example that the number in column 𝑘 that is located in the row identified by 𝑗𝑛 

in the first column, can be expressed as 𝑘 + 𝑗𝑛 = 𝑞𝑗𝑚 + 𝑟𝑗 where hcf(𝑘 + 𝑗𝑛, 𝑛) = hcf(𝑟𝑗, 𝑚), 

with 𝑟𝑗 taking on different values, ranging from 0 to 𝑚 − 1 in some order, for each value of 𝑗. Of 

these remainders, 𝜑(𝑚) will be coprime with 𝑚. 

 

Therefore, there are 𝜑(𝑛) columns in which all the numbers are prime to 𝑛 and in each of those 

columns 𝜑(𝑚) of the numbers are also prime to 𝑚.  Hence there are 𝜑(𝑚)𝜑(𝑛) numbers 

coprime with both 𝑚 and 𝑛, i.e.  

                                         hcf(𝑚, 𝑛) = 1  ⇔   𝜑(𝑚𝑛) = 𝜑(𝑚)𝜑(𝑛).                                         (9) 

Note that if 𝑚 = 𝑝, 𝑛 = 𝑞, where 𝑝 and 𝑞 are both primes, then 𝜑(𝑝𝑞) = (𝑝 − 1)(𝑞 − 1). 

Euler’s theorem 

Let hcf(𝑎, 𝑚) = 1 for 𝑚 ≥ 1 and let 𝑛 = 𝜑(𝑚).  Among the complete set of residues modulo 𝑚, 

𝑛 of them, {𝑎1, 𝑎2, ⋯ , 𝑎𝑛} say, will form a reduced set of residues that are coprime with 𝑚.  For 

example, a complete set of residues modulo 10 is {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} while the reduced set 

is {1, 3, 7, 9}, the 4 numbers coprime with 10.  The set {𝑎𝑎1, 𝑎𝑎2, ⋯ , 𝑎𝑎𝑛} is also a reduced set 

of residues because they are obviously all coprime with 𝑚 and any two of them are incongruent 

modulo 𝑚.  For if 𝑎𝑎𝑖 ≡ 𝑎𝑎𝑗 (𝑖 ≠ 𝑗), then 𝑎𝑖 ≡ 𝑎𝑗 which, since the residues 𝑎𝑖 are incongruent in 

pairs, is only possible if 𝑖 = 𝑗.  (Note that although cancellation is not generally permissible in 

congruences, the 𝑎 can be cancelled here because it is coprime with 𝑚.)  Each residue in the set 

{𝑎𝑎1, 𝑎𝑎2, ⋯ , 𝑎𝑎𝑛} belongs to just one of the congruence classes defined by the original residues 

{𝑎1, 𝑎2, ⋯ , 𝑎𝑛} but not necessarily in the same order. This is illustrated by choosing 𝑎 = 13 in 

the numerical example above with the reduced set of residues {1, 3, 7, 9}. The new reduced set is 

{13, 39, 91, 117} where 13 ≡ 3, 39 ≡ 9, 91 ≡ 1, 117 ≡ 7 (mod 10). 

Since congruences can be multiplied like ordinary equations, the congruence 



𝑎𝑎1𝑎𝑎2𝑎𝑎3 ⋯  𝑎𝑎𝑛 ≡ 𝑎1𝑎2𝑎3  ⋯ 𝑎𝑛  (mod 𝑚) 

is valid regardless of which congruence classes the individual terms on the left-hand side belong 

to. It can be rewritten as 

𝑎𝑛𝑎1𝑎2𝑎3  ⋯ 𝑎𝑛 ≡ 𝑎1𝑎2𝑎3  ⋯ 𝑎𝑛  (mod 𝑚) 

The product 𝑎1𝑎2𝑎3  ⋯  𝑎𝑛 and 𝑚 are coprime because the residues in the reduced set are all 

coprime with 𝑚 by definition and therefore their product is too.  Thus the common factor 

𝑎1𝑎2𝑎3  ⋯  𝑎𝑛 can be cancelled in the congruence above, yielding 𝑎𝑛 ≡ 1 (mod 𝑚). This is 

Euler’s theorem which can be stated more formally as 

hcf(𝑎, 𝑚) = 1     ⇒    𝑎𝜑(𝑚) ≡ 1 (mod 𝑚). 

If 𝑚 = 𝑝, a prime, then 𝜑(𝑚) = 𝑝 − 1 and the condition hcf(𝑎, 𝑝) = 1 is automatically 

satisfied.  In this special case Euler’s theorem becomes 

𝑎𝑝 ≡ 𝑎 (mod 𝑝). 

This result had already been discovered independently by Fermat and is often called Fermat’s 

little theorem.  

Invoking the multiplicative property of congruences again we may multiply the congruence in 

Euler’s theorem by itself 𝑘 times to obtain (𝑎𝜑(𝑚))
𝑘

≡ 1𝑘, or 

                                                        𝑎𝑘𝜑(𝑚) ≡ 1 (mod 𝑚).                                                (10) 

Encryption 

We conclude by discussing an application of number theory to the encryption of data transmitted 

over the internet.  It is an example of how even the purest branches of mathematics, which 

appear to be devoid of any practical use in the real world, can lead to unforeseen and surprising 

applications. 

The RSA method, as it is called, relies on the fact that while it is easy to multiply two prime 

numbers together, the reverse procedure of factoring a composite number is much more difficult.   

Multiplying 83 by 59 is a trivial exercise in mental arithmetic but finding the two prime factors 

of 4897 is much more challenging.  When very large prime numbers are involved, the 

factorisation of their product becomes near impossible. 

We envisage a sender A who wants to transmit confidential data to a receiver B, even if a hacker 

E is able to monitor the two-way electronic traffic between them.  It is conventional to give A, B 

and E the personal names Alice, Bob and Eve (for eavesdropper) respectively. In order to 

facilitate the encryption of data Alice wants to transfer to him, Bob first calculates 𝑛 = 𝑝𝑞 by 

multiplying two very large prime numbers 𝑝 and 𝑞 which are only known to him and then 

calculates  

𝜑(𝑛) = 𝜑(𝑝𝑞) = 𝜑(𝑝)𝜑(𝑞) = (𝑝 − 1)(𝑞 − 1) 



using the multiplicative property (9) of the totient for coprime numbers. Finally, he chooses any 

number 𝑒 coprime with 𝜑(𝑛), and calculates 𝑑 by solving the congruence 𝑒𝑑 ≡ 1 (mod 𝜑(𝑛)), 

that is by finding 𝑑 and 𝑘 such that  

𝑒𝑑 = 1 + 𝑘𝜑(𝑛). 

The coprime condition is necessary because if hcf(𝑒, 𝜑(𝑛)) = ℎ, then ℎ|𝑒 and ℎ|𝜑(𝑛) which 

implies ℎ|1 in the equation above, i.e. ℎ = 1. 

In preparation for receiving encrypted data, Bob has the numbers 𝑝, 𝑞, 𝑛, 𝑒, 𝑑 and 𝜑(𝑛) at his 

disposal.  He regards 𝑛 and 𝑒 as the public key (recall 𝑛 is sufficiently large that it cannot be 

factored into its constituent primes 𝑝 and 𝑞 which are confidential to Bob) and sends them to 

Alice with no worry if Eve or others intercept them.  

Alice’s message is represented by the number 𝑥 which could be numerical data or text converted 

into numerical form.  On receipt of 𝑛 and 𝑒, she converts 𝑥 into an encrypted number 𝑦 by 

computing  

𝑦 ≡ 𝑥𝑒  (mod 𝑛). 

and sends 𝑦 to Bob.  Again, there is no possibility of Eve converting 𝑦 back into 𝑥 because, as 

we shall see later, decryption requires a knowledge of 𝑑, and therefore of 𝑝 and 𝑞, which are 

known only to Bob.    

On the assumption that hcf(𝑥, 𝑛) = 1, which is virtually certain given that the only factors of 𝑛 

are the large primes 𝑝 and 𝑞, the extension (10) of Euler’s theorem can now be used along with 

some routine algebra to recover 𝑥 from 𝑦, as follows 

𝑦𝑑 ≡ (𝑥𝑒)𝑑 = 𝑥𝑒𝑑 = 𝑥1+𝑘𝜑(𝑛) = 𝑥 ∙ 𝑥𝑘𝜑(𝑛) ≡ 𝑥 ∙ 1  (mod 𝑛).  

Hence, with his confidential key 𝑑, Bob can decode Alice’s message by solving the congruence 

𝑥 ≡ 𝑦𝑑  (mod 𝑛). 

Before illustrating the theory of RSA encryption with a numerical example, we shall first show 

how seemingly formidable calculations in modular arithmetic, which arise in even the simplest 

numerical examples, can easily be performed on an ordinary calculator.  In modulo 𝑛 arithmetic, 

any integer 𝑎 belongs to the congruent class defined by the remainder (or least positive residue) 

when 𝑎 is divided by 𝑛, designated here by 𝑎0 (0 ≤ 𝑎0 ≤ 𝑛 − 1).  Since 𝑎 ≡ 𝑎0 (mod 𝑛), we 

have 𝑎 = 𝑘𝑛 + 𝑎0 and division by 𝑛 gives  

𝑎

𝑛
= 𝑘 +

𝑎0

𝑛
 

It is clear from the right-hand side of this equation that 𝑘 is the integral part of 𝑎/𝑛,  and 𝑎0/𝑛 is 

the decimal or fractional part because 0 ≤ 𝑎0 ≤ 𝑛 − 1.  It follows that  

𝑎0 = 𝑛 (
𝑎

𝑛
− ⌊

𝑎

𝑛
⌋) 



Hence to solve 𝑥 ≡ 𝑎 (mod 𝑛) on a standard calculator, where 𝑎 and 𝑛 may be large numbers, 

we can reduce the congruence to 𝑥 ≡ 𝑎0 (mod 𝑛) by entering the sequence of operations 

(𝑎 ÷ 𝑛) = 𝑏;  𝑏 − ⌊𝑏⌋ = 𝑐;  𝑐 × 𝑛 = 𝑎0.  Many calculators have a separate key for the floor 

function which makes such calculations relatively easy.  Some even have a modulo key that does 

the whole calculation in one step.  

If the numbers are initially too large to be stored on the calculator, the congruence can be solved 

by breaking it down into component parts and solving each part separately. If 𝑥 ≡ 𝑎𝑏 (mod 𝑛) 

and if  𝑥1 ≡ 𝑎 (mod 𝑛) and 𝑥2 ≡ 𝑏 (mod 𝑛), then 𝑥1𝑥2 ≡ 𝑎𝑏 (mod 𝑛), i.e. 𝑥 ≡ 𝑥1𝑥2 (mod 𝑛) 

and the two simpler congruences involving 𝑎 and 𝑏 can be solved first.  Note that if 𝑥 ≡ 𝑎𝑢+𝑣, 

then we can choose 𝑥1 = 𝑎𝑢 and 𝑥2 = 𝑎𝑣.  If  𝑥 ≡ 𝑎𝑢𝑣  (mod 𝑛), let 𝑎𝑢  ≡ 𝑏 (mod 𝑛) and 

multiply this congruence by itself 𝑣 times so that (𝑎𝑢)𝑣 ≡ 𝑏𝑣 (mod 𝑛) so that 𝑥 ≡ 𝑏𝑣 (mod 𝑛) 

with the numerically simpler congruence  𝑏 ≡ 𝑎𝑢 (mod 𝑛) being solved first.   

Suppose Bob takes the two primes mentioned earlier, 𝑝 = 83 and 𝑞 = 59 (although in actual 

practice they would be much larger comprising up to several hundred digits), so that 𝑛 = 4897 

and 𝜑(𝑛) = 82 × 58 = 4756.  Clearly hcf(7, 4756) = 1, so Bob could choose 𝑒 = 7.  He now 

solves 7𝑑 ≡ 1 (mod 4756), or 7𝑑 = 1 + 4756𝑘 for some 𝑘, obtaining 𝑑 = 1359 with 𝑘 = 2. 

He sends the two numbers 4897 and 7 to Alice representing his public key for 𝑛 and 𝑒. 

Alice proposes to send Bob the three-digit code on the back of her credit card which for 

simplicity we take to be 012.  With the understanding that a two-digit number implies a leading 

zero, she sets 𝑥 = 12 and computes 𝑦 ≡ 127(mod 4897) using the values of 𝑛 and 𝑒 sent to her 

by Bob.  The least positive residue in the congruence class defined by 127 = 35,831,808 is 

found by the procedure to calculate the remainder when 127 is divided by 4897 described in the 

introductory paragraph above, that is {(127 ÷ 4897) − ⌊127 ÷ 4897⌋} × 4897 = 459. Thus the 

number 𝑦 = 459 is the encrypted version of 𝑥 = 12 that Alice sends to Bob. 

When Bob receives the coded message 459 he has to calculate 𝑥 ≡ 4591359 (mod 4897) to 

recover Alice’s credit card number.  The calculation is simplified by letting 𝑥 ≡ 𝑥1𝑥2 where  

𝑥1 = 4599 and 𝑥2 = (𝑥1)150.  (Here and henceforth all congruences are understood to be 

modulo 4897.)  The calculator gives {(4599 ÷ 4897) − ⌊4599 ÷ 4897⌋}× 4897 = 2802 for 

the remainder of 𝑥1 when divided by 4897.  Hence 𝑥1 ≡ 2802 and 𝑥2 ≡ 2802150 ≡ 1510, the 

latter congruence resulting from a similar calculation for the remainder of (2802150 ÷ 4897).  

Substitution of 𝑥1 and 𝑥2 in the original congruence for 𝑥 gives 𝑥 ≡ 2802 × 1510 = 4,231,020, 

which reduces in the usual way to {(4231020 ÷ 4897 − ⌊4231020 ÷ 4897⌋}× 4897 = 12.  

Alice’s original value of 𝑥 = 12 has been successfully retrieved! 

Almost magically, it seems, Alice’s message has emerged from the jungle of calculations 

involving large numbers which arise even in this simple example.  Bob now interprets the 

number 12 as indicating that the CVC number on Alice’s credit card is 012 in the knowledge 

that it has been transmitted to him securely.  


