
THE DOPPLER EFFECT 

Preamble 

The usual derivations of the relativistic Doppler formula follow from a prior 

development of the Lorentz transformation and the basic equations of special 

relativity, often with reference to exotic spaceships, rockets and their like.  

However, an alternative and delightfully intuitive approach to special relativity, 

the ‘𝑘-calculus’ formulated by H. Bondi in 1962, begins with the relativistic 

Doppler effect illustrated with the aid of space-time diagrams, from which the 

other equations of special relativity are subsequently derived. In this note, we also 

start with Doppler effect, but rather than appealing to abstract diagrams or 

imaginary spaceships travelling at great speed, we refer here only to LiDAR and 

Radar traffic speed-traps which will be familiar to most people from first-hand 

experience.  The discussion is based on the Principle of Relativity which states 

that the laws of physics are the same in all inertial frames, including the fact that 

the velocity of light is absolute.  In other words, the mathematical formulation of 

the laws of physics will always have the same expression in terms of the 

coordinates of the inertial frame under consideration.  In the final section, the 

formula for the classical (Newtonian) Doppler effect for sound waves is discussed 

and shown to be derived from a general relativistic formula that represents the 

Doppler effect for all cases.   

LiDAR 

Although Lidar is technologically sophisticated, it is based on the simple 

principle that a sequence of laser pulses emitted at given time intervals by a hand-

held source will be reflected by a vehicle moving relative to the source with 

slightly different time intervals because the vehicle retreats from or advances 

towards the next pulse during each interval. The small difference between the 

intervals of the emitted and received signals enables the vehicle speed to be 

calculated.      

In practice, the Lidar gun emits about two hundred pulses per second, but it is 

only necessary to consider two successive signals in order to analyse the principle 

on which it operates.  The diagram here illustrates the situation we shall consider. 
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Suppose that a police officer O, stationed at position 𝑥 = 0, observes a car 

speeding past him at time 𝑡 = 0.  For convenience we assume that the time 𝑡′ 

measured by C, the driver of the car, as he passes O is also 𝑡′ = 0.  After the car 

has passed, the officer points the Lidar gun at the retreating vehicle. We assume 

that it emits a laser pulse at 𝑡 = 𝑡1 which is reflected from the retreating vehicle 

and received back by O at 𝑡 = �̂�1 and that the second pulse follows the first at 

time 𝑡2 with its reflection received at time �̂�2. Thus the time interval, or period, 

between the emitted pulses is 𝑇 = 𝑡2 − 𝑡1, and that between the received pulses 

is �̂� = �̂�2 − �̂�1.  Obviously, �̂� >  𝑇 because the car is moving away from O so that 

the second pulse has a slightly longer distance to travel than the first.  

Since the speed of light 𝑐 is the same in both directions, O will deduce that the 

distance 𝑑1 of the car when the first pulse is reflected from it, is half the total 

distance travelled by the pulse there and back, i.e. 𝑑1 = ½𝑐(�̂�1 − 𝑡1). The time 

𝜏1 of the reflection, according to O, is the time when the pulse was emitted plus 

half its total travel time, i.e. 𝜏1 = 𝑡1 + ½(�̂�1 − 𝑡1) = ½(𝑡1 + �̂�1). Likewise, the 

second pulse is reflected from the car at time 𝜏2 = ½(𝑡2 + �̂�2) when it is at a 

distance 𝑑2 = ½𝑐(�̂�2 − 𝑡2) from O.  In the time interval 

𝜏2 − 𝜏1 = ½(𝑡2 + �̂�2 − 𝑡1 − �̂�1) = ½(�̂� + 𝑇) 

between successive reflections, the car travels a distance  

𝑑2 − 𝑑1 = ½𝑐(�̂�2 − 𝑡2 − �̂�1 + 𝑡1) = ½𝑐(�̂� − 𝑇). 

Its velocity 𝑣 moving away from O is therefore given by 

𝑣 =
𝑑2 − 𝑑1

𝜏2 − 𝜏1
=

𝑐(�̂� − 𝑇)

�̂� + 𝑇
 

which can be rearranged as  

�̂�

𝑇
=

1 + 𝑣/𝑐

1 − 𝑣/𝑐
  

Since 𝑣 ≪ 𝑐, this formula reduces to �̂� 𝑇⁄ ≈ 1 + 2𝑣/𝑐 to 1st order in 𝑣/𝑐. Thus a 

simpler but very accurate expression for the speed of the receding car is  

𝑣 ≈ ½𝑐(�̂� 𝑇 − 1⁄ ). 

 



Radar 

Radar speed guns operate on a different principle. Instead of laser pulses it emits 

a continuous radio wave of frequency 𝑓, typically measured in bands either 

around 24 GHz or 34 GHz.  After reflection the frequency of the received wave 

has undergone a frequency change. It is from this so-called Doppler frequency 

shift that the speed of the car is calculated. 

Fortunately, the derivation in the previous section can be carried over intact with 

only a minor difference in interpretation. Thus we now regard 𝑇 as the period of 

the emitted radio wave of frequency 𝑓 = 1/𝑇.  Clearly 𝑓 > 𝑓 = 1/�̂� so that the 

Doppler frequency shift is Δ𝑓 = 𝑓 − 𝑓 given by 

Δ𝑓 𝑓⁄ = 𝑇(1 𝑇⁄ − 1 �̂�) =⁄ 1 − 𝑇 �̂�⁄ = 1 − (1 − 𝑣 𝑐⁄ ) (1 + 𝑣 𝑐⁄ )⁄ . 

It follows that  

𝑣

𝑐
=

Δ𝑓 𝑓⁄

2 − Δ𝑓 𝑓⁄
      

so that 𝑣 ≈ 𝑐Δ𝑓/2𝑓 to 1st order in ∆𝑓 𝑓⁄ . 

Modified results for an approaching vehicle 

Imagine that a second police officer R is stationed far ahead of O on the long 

straight road along which the car is speeding (see diagram) and suppose that 

officer O asks officer R to use his Lidar gun to check the speed of the car from 

his vantage point as the car approaches him. Retaining the previous notation, we 

let 𝑇 and �̂� be the periods of the emitted and reflected pulses measured by R 

respectively. We note that �̂� < 𝑇 when the car is approaching, because successive 

pulses now have shorter paths to travel. By the same arguments as before, the 

time interval between the reflections of the two pulses from the car is still 

½(�̂� + 𝑇) but since the car is approaching, the distance it travels in this time is 

now ½𝑐(𝑇 − �̂�).  Thus corresponding to the formulae for a receding vehicle, we 

have  

𝑣

𝑐
=

𝑇 − �̂�

𝑇 + �̂�
   and   

�̂�

𝑇
=

1 − 𝑣/𝑐

1 + 𝑣/𝑐
 

Not surprisingly, these formulae are the same as the previous results with 𝑣 

replaced by – 𝑣.  



Bondi’s 𝒌-calculus  

The preceding results have all been derived for the inertial frame of reference in 

which O and R are stationary.  Henceforth we shall call this the rest frame.  

Consider now the timing of these events as measured by the driver C of the car. 

We shall label all times and positions observed by C with primed coordinates. In 

his frame of reference, he will receive the pulses at intervals of 𝑃′, which for a 

receding vehicle must be greater than 𝑇, so that 𝑃′ = 𝑘𝑇 where 𝑘 > 1.  (Note that 

𝑃, without the prime, would denote the time interval between pulses received by 

C as observed by O, not C.)  Now from C’s perspective, the signal is reflected with 

period 𝑃′ back towards O who appears to be receding with speed 𝑣, thereby 

exactly mirroring the situation in the rest frame of reference because the speed of 

light is the same in all inertial frames. We may assert, therefore, that in his rest 

frame, O receives the reflected signal at intervals of 𝑘𝑃′.  This implies that 

�̂� = 𝑘𝑃′ = 𝑘(𝑘𝑇) = 𝑘2𝑇 

Substituting the earlier result for a receding car we obtain 

𝑘 =  √
1 + 𝑣/𝑐

1 − 𝑣/𝑐
 

This is Bondi’s 𝑘-factor.  It expresses the Doppler effect for a receding source 

because the period �̂� between the reflected pulses received by stationary observer 

O is a factor 𝑘 greater than the period 𝑃′ of their source from the moving car. Of 

course, it is equally true that the 𝑘-factor gives the Doppler effect for a receiver 

moving away from the source because 𝑃′ is a factor 𝑘 greater than 𝑇.  Only their 

relative velocity of separation 𝑣 is relevant.   

Now consider the Doppler effect measured by officer R for whom the source is 

approaching.  Let the corresponding factor be 𝑞, i.e. pulses originating from C 

with period 𝑃′ are received by R with period 𝑞𝑃′.  This situation would arise if 

the pulses from O are partially transmitted from the car C to officer R, as well as 

being reflected back to O.  But we know that R must receive them with period 𝑇 

because the two police officers O and R are stationary in the same rest frame. It 

follows that  𝑇 = 𝑞𝑃′ = 𝑞𝑘𝑇, whence 𝑞 = 1/𝑘.  This result obviously holds also 

for a receiver moving towards the source.  

 



The Lorentz transformation 

Suppose now that when officer O spots C speeding by, he decides to activate a 

warning traffic light at some distance 𝑥 ahead, by sending a separate laser pulse 

which turns the traffic light on at time 𝑡.  This means he must send the pulse at 

time 𝑡 − 𝑥/𝑐 because the activation pulse takes time 𝑥/𝑐 to reach the traffic light.  

The interval between the initial time 0 and the time of sending the pulse is 

therefore 𝑇0 = 𝑡 − 𝑥/𝑐 which may be regarded as a time interval just like the 

interval between successive Lidar pulses discussed previously. The initial time 0 

in C’s reference frame is coincident with time 0 in O’s frame because both O and 

C set their time to zero at the instant C passed O.  According to the 𝑘-calculus, 

therefore, the time interval 𝑃0
′ observed by C at the instant the activation signal 

passes the moving car is 𝑃0
′ = 𝑘𝑇0 = 𝑘(𝑡 − 𝑥/𝑐).   If, according to C, the traffic 

light is switched on at time 𝑡′ when it is at a distance 𝑥′ from the car, then by the 

argument we used for the rest frame of O, we deduce that 𝑃0
′ = 𝑡′ − 𝑥′/𝑐.  Hence 

𝑡′ − 𝑥′/𝑐 =  𝑘(𝑡 − 𝑥/𝑐) 

When the traffic light is switched on, its light wave reaches C at time 𝑡′ + 𝑥′/𝑐 

and continues onwards to reach O at time 𝑡 + 𝑥/𝑐. These two times can also be 

recognised as time intervals from the initial time 0 common to both frames of 

reference, so that the 𝑘-calculus gives 

𝑡 + 𝑥/𝑐 = 𝑘(𝑡′ + 𝑥′/𝑐). 

Multiplying the first of these two equations by 𝑘 and then adding and subtracting 

them, we obtain 

2𝑘𝑐𝑡′ = (𝑘2 + 1)𝑐𝑡 + (𝑘2 − 1)𝑥,      2𝑘𝑥′ = (𝑘2 + 1)𝑥 − (𝑘2 − 1)𝑐𝑡. 

It follows by substitution for 𝑘 and rearrangement, that 

𝑥′ =
𝑥 − 𝑣𝑡

√1 − 𝑣2/𝑐2
 ,     𝑡′ =

𝑡 − 𝑣𝑥/𝑐2

√1 − 𝑣2/𝑐2
 

which is the well-known Lorentz transformation linking the coordinates (𝑥, 𝑡) of 

an event in an inertial frame to the corresponding coordinates (𝑥′, 𝑡′) of the same 

event in another inertial frame moving with relative velocity 𝑣.  



In a system of units in which 𝑐 = 1, i.e. all velocities are measured as fractions of 

𝑐 and distances are expressed in units of time (the time it takes for light to travel 

that distance), the Lorentz transformation takes on the symmetric form 

𝑥′ =
𝑥 − 𝑣𝑡

√1 − 𝑣2
 ,     𝑡′ =

𝑡 − 𝑣𝑥

√1 − 𝑣2
 

 

Velocity transformation 

Suppose officer O summons a police car D to give chase to the speeding vehicle 

C with velocity 𝑉 (see preceding diagram). If D is cruising at this speed between 

times 𝑡3 and 𝑡4 when it has reached distances 𝑥3 and 𝑥4 from O respectively, then   

𝑉 =
𝑥4 − 𝑥3

𝑡4 − 𝑡3
 

The corresponding coordinates in C’s frame of reference are (𝑥3
′ , 𝑡3

′ ) and (𝑥4
′ , 𝑡4

′ ).  

Substituting from the Lorentz transformation and dividing numerator and 

denominator by 𝑡4 − 𝑡3, we obtain an expression for 𝑉′, the velocity of the police 

car according to C, as follows   

𝑉′ =
𝑥4

′ − 𝑥3
′

𝑡4
′ − 𝑡3

′ =
𝑥4 − 𝑣𝑡4−𝑥3 + 𝑣𝑡3

𝑡4 − 𝑣𝑥4/𝑐2−𝑡3 + 𝑣𝑥3/𝑐2
=

𝑉 − 𝑣

1 − 𝑣𝑉/𝑐2
 

If D is parked at rest in O’s frame of reference, then 𝑉 = 0 and 𝑉′ = −𝑣, i.e. from 

C’s perspective, O and D are receding backwards with velocity 𝑣, as expected.  If 

𝑉 = 𝑐, then  𝑉′ = 𝑐 confirming the invariance of the speed of light in all inertial 

frames.  Note also that when 𝑉 ≪ 𝑐 and 𝑣 ≪ 𝑐, we recover the classical result 

𝑉′ = 𝑉 − 𝑣 for relative velocities.  

The Doppler effect for sound waves 

Suppose also that the police car D switches on its siren while chasing the speeding 

car C. The signal from the siren propagates as a sound wave which differs from 

the radar or Lidar signals that travel at the speed of light in all inertial frames. 

Sound requires a medium in which to propagate.  Its measured speed 𝑠 is relative 

to the host medium, in this case the air.  If we assume there is no wind blowing, 

the air is stationary in the rest frame and 𝑠 is the speed of the sound wave as 

measured by observers on the ground.  



The coordinates of events in other inertial frames of reference are still governed 

by the Lorentz transformation, of course, because communication between 

observers in different inertial frames can only made at the speed of light. 

Although such relativistic corrections are negligible when sound waves are being 

discussed, we shall retain the full equations for the time being. Appropriate 

approximations will be deferred until the end. 

Let the times 𝑡3 and 𝑡4 in the last section be chosen so that they span exactly one 

period of the sound wave emitted by the siren, i.e. 𝑡4 − 𝑡3 = 𝑇𝑎 where the 

subscript 𝑎 indicates that this period applies to an acoustic wave.  Since car D is 

travelling with velocity 𝑉 < 𝑠 it follows that 𝑥4 − 𝑥3 = 𝑉𝑇𝑎.  Note that all these 

quantities are defined in the rest frame.  We denote their values in the inertial 

frame fixed on car D by an asterisk. Thus according to the Lorentz transformation, 

the actual period of the sound wave defined in the inertial frame of its source, is  

𝑇𝑎
∗ = 𝑡4

∗ − 𝑡3
∗ =

𝑡4 − 𝑡3 − 𝑉(𝑥4 − 𝑥3)/𝑐2

√1 − 𝑉2/𝑐2
=

𝑇𝑎 − 𝑉2𝑇𝑎/𝑐2

√1 − 𝑉2/𝑐2
= 𝑇𝑎√1 − 𝑉2/𝑐2 

This is an example of the familiar time-dilation effect whereby the time interval 

𝑇𝑎
∗ between two events appears longer (here 𝑇𝑎) to an observer in a frame that is 

moving relative to the inertial frame in which the events take place. The sound 

wave propagates with speed 𝑠 > 𝑣 in the rest frame towards car C. Keeping the 

earlier notation, we denote by 𝜏3 the time that sound leaving the siren at time 𝑡3 

reaches C.  At this time, C has travelled a distance 𝑑3 = 𝑣𝜏3 so that the sound 

emitted at time 𝑡3 takes a further time (𝑣𝜏3 − 𝑥3)/𝑠 to travel to the car.  It follows 

that  𝜏3 = 𝑡3 + (𝑣𝜏3 − 𝑥3)/𝑠, whence (𝑠 − 𝑣)𝜏3 = 𝑠𝑡3 − 𝑥3. By a similar 

argument we deduce that (𝑠 − 𝑣)𝜏4 = 𝑠𝑡4 − 𝑥4. Subtraction gives 

𝑃𝑎 = 𝜏4 − 𝜏3 =
𝑠(𝑡4 − 𝑡3) − (𝑥4 − 𝑥3)

𝑠 − 𝑣
=

𝑠 − 𝑉

𝑠 − 𝑣
𝑇𝑎 =

𝑠 − 𝑉

𝑠 − 𝑣
∙

𝑇𝑎
∗

√1 − 𝑉2/𝑐2
 

where 𝑃𝑎 is the period (in the rest frame) of the sound wave arriving at car C.  In 

the same way the formula connecting 𝑇𝑎
∗ with 𝑇𝑎 was derived earlier, time dilation 

gives 𝑃𝑎
′ = 𝑃𝑎√1 − 𝑣2/𝑐2, which substituted in the equation above, yields  

𝑃𝑎
′

𝑇𝑎
∗

=
𝑠 − 𝑉

𝑠 − 𝑣
√

1 − 𝑣2/𝑐2

1 − 𝑉2/𝑐2
 



The Doppler effect is usually expressed in terms of frequencies rather than 

periods.  We denote the source frequency of the sound wave by 𝑓𝑠 = 1/𝑇𝑎
∗ and 

the frequency observed by the receiver as 𝑓𝑟 = 1/𝑃𝑎
′.  We also write 𝑣𝑠 = 𝑉 and 

𝑣𝑟 = 𝑣 for the velocities of the source and receiver respectively and finally make 

the approximations 𝑣 ≪ 𝑐 and 𝑉 ≪ 𝑐, giving   

𝑓𝑟

𝑓𝑠
≈

𝑠 − 𝑣𝑟

𝑠 − 𝑣𝑠
 

which is the classical expression for the Doppler effect for the source moving 

towards the receiver, and the receiver receding from the source. The 

corresponding formulae for source or receiver moving in the opposite direction 

are obtained simply by changing the relevant sign of 𝑣𝑟 or 𝑣𝑠. 

Connection between the classical and relativistic Doppler effects 

It is instructive to see what happens if we replace 𝑠 by 𝑐, the speed of light, in the 

preceding equations.  Dropping the subscripts 𝑎 (since we are no longer 

discussing acoustic waves) and putting 𝑠 = 𝑐 in the exact formulae above, we 

obtain after some routine algebra 

𝑃′

𝑇∗
=

1 − 𝑉/𝑐

1 − 𝑣/𝑐
√

1 − 𝑣2/𝑐2

1 − 𝑉2/𝑐2
= √

1 + �̅�/𝑐

1 − �̅�/𝑐
= �̅�     where      �̅� =

𝑣 − 𝑉

1 − 𝑣𝑉/𝑐2
 

Here �̅� is the Doppler factor observed in the rest frame of O, relative to which 

both source and receiver are in motion. It depends on a single velocity �̅� which is 

easily shown to take the same algebraic form in all inertial frames in accordance 

with the Principle of Relativity. Moreover, its definition is simply the velocity 

transformation formula that represents �̅� as either the velocity of C from D’s 

perspective or the negative (oppositely directed) velocity of D from C’s 

perspective.  It is therefore a measure of the relative velocity between receiver 

and source; indeed it reduces to the classical relative velocity 𝑣 − 𝑉 when 𝑣 ≪ 𝑐 

and 𝑉 ≪ 𝑐.   

Some special cases are illustrative.  (i) If  𝑉 = 0, then �̅� = 𝑣, �̅� = 𝑘 and 𝑇∗ = 𝑇 

giving 𝑃′ = 𝑘𝑇 which is the anticipated result because these are analogous 

conditions to those in our original example of a radar wave propagated from a 

stationary source O towards a receiver C receding with velocity 𝑣.  (ii) If 𝑉 = 𝑣, 

we have �̅� = 0, �̅� = 1 and 𝑃′ = 𝑇∗ there being no Doppler effect when both C 



and D belong to the same inertial frame.  (iii) Suppose 𝑉 < 𝑣, so that car C is 

moving away from D.  In D’s inertial frame, C has a positive speed 𝑣∗ = �̅� by the 

velocity transformation formula.  Thus �̅� = 𝑘∗ where 𝑘∗ is the Doppler 𝑘-factor 

expressed in terms of the velocity 𝑣∗, and 𝑃′ = 𝑘∗𝑇∗ which is the Doppler effect 

in D’s inertial frame that corresponds to the result in the rest frame of O given in 

example (i).  (iv) If  𝑉 > 𝑣,  the source D is approaching receiver C.  This is 

comparable to C approaching R in the rest frame as described earlier. The velocity 

of D expressed in C’s inertial frame is 𝑉′ = −�̅� so that �̅� = 1/𝑘′ and 𝑃′ = 𝑇∗/𝑘′ 

which is the expected Doppler effect for a source approaching the receiver.   

Things are different with sound waves because the velocity of sound is not the 

same in all inertial frames.  For example, although the air is stationary in the rest 

frame of O, the driver of car D will experience a headwind of velocity 𝑉. Thus 

the velocity of a soundwave in D’s frame is 𝑠∗ = (𝑠 − 𝑉)/(1 − 𝑠𝑉/𝑐2) ≈ 𝑠 − 𝑉 

since 𝑉 ≪ 𝑐 and 𝑠 ≪ 𝑐 and with the additional approximation 𝑣 ≪ 𝑐, the velocity 

of C is 𝑣∗ ≈ 𝑣 − 𝑉 while 𝑃𝑎
′ ≈ 𝑃𝑎 and 𝑇𝑎

∗ ≈ 𝑇𝑎.  To the same approximation, the 

Doppler effect for the sound waves in the rest frame is 𝑃𝑎/𝑇𝑎 = (𝑠 − 𝑉)/(𝑠 − 𝑣) 

as we have already seen. (For simplicity we are using the formulae for the 

classical Doppler effect which excludes the negligible relativistic factor, but the 

same conclusions are reached even if this factor is retained, albeit with a more  

complicated algebraic derivation.) Expressed in terms of 𝑠∗ and 𝑣∗ by the 

relations above, the Doppler effect in D’s frame becomes 𝑃𝑎/𝑇𝑎 = 𝑠∗/(𝑠∗ − 𝑣∗).  

This is indeed the correct result for a source at rest (as the car D must be in its 

own reference frame, of course) in accordance with the Principle of Relativity 

which requires the laws of physics to be consistent in all inertial frames.  Because 

these formulae also involve the velocity of sound in the particular inertial frame 

under consideration, however, they do not depend solely on the relative velocity 

between source and receiver as in the case of electromagnetic waves.     

The exact formula for the Doppler effect  

A result of interest in the last section was that the analysis of the Doppler effect 

for sound waves yielded a formula that also became valid for radar (in fact for 

any electromagnetic wave) as the wave speed 𝑠 approached the speed of light 𝑐. 

The relativistic factor in the exact formula, which was negligible for situations 

involving sound waves, ensured that the formula merged into the correct form for 

radar waves. This suggests that the exact formula we derived for sound waves 

can be re-stated in a form that will cover all applications.  



Thus, in the conventional notation introduced in the last section, where 𝑓𝑠 and 𝑓𝑟 

are the frequencies of the emitted and received waves respectively and 𝑣𝑠 and 𝑣𝑟 

denote the speeds of the source and receiver relative to the medium of wave 

propagation in which the wave speed is 𝑠, the Doppler effect for all cases is 

expressed by the single formula  

   

 

 

 

The choice of positive or negative signs has been included to accommodate all 

four of the possible combinations of directions of motion: 

  

(i) When the source is approaching the receiver and the receiver is retreating from 

the source as in the example considered here (car D is following car C) both 

numerator and denominator in this formula have minus signs. 

 

(ii) If the situation is reversed so that the receiver is approaching the source and 

the source is retreating from the receiver, then both numerator and denominator 

have plus signs.  

  

(iii) For both source and receiver approaching each other, the numerator will have 

a plus sign and the denominator a minus sign. 

 

(iv) For both source and receiver moving away from each other, the numerator 

will have a minus sign and the denominator a plus sign.  

John Weaver, 2019  

 

 

𝑓𝑟

𝑓𝑠
=

𝑠 ± 𝑣𝑟

𝑠 ± 𝑣𝑠

√
1 − 𝑣𝑠

2/𝑐2

1 − 𝑣𝑟
2/𝑐2

 


